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Abstract. The drainage of the thin fluids layers, or lamellae, in a foam may be modeled by a vertical draining thin
liquid film. A sequence of mathematical models is described that attempts to explain some aspects of the drainage
of the film. Lubrication theory is used to derive the nonlinear partial differential equations (PDE) that describe the
film; all models assume an insoluble surfactant in this paper. The models include effects from gravity, viscosity,
surface tension and its dependence on surface concentration (the Marangoni effect), and surface viscosity; they
may also include nonlinear equations of state. The models are able to predict very well the fast and slow limits of
the drainage observed experimentally; a limited range of intermediate drainage rates has been described by these
models to date. The limitations of the models and possible extensions will be discussed.
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1. Introduction

Soap films have fascinated scientists and laymen for hundreds of years; they are important
models for a number of scientific and technological phenomena including the stability of
foams, emulsions, and other disperse systems, the mathematical construction of geometrical
figures with minimal surface area, and the structure and stability of biological membranes
(e.g., [1–3]). These films are visually fascinating due to the intense light interference band
colors of the film and their rapid and turbulent flow patterns.

The drainage of soap films has been studied by a number of authors (e.g., [1, 4]). A variety
of phenomena may be of interest, including details of rupture (for a recent review, see [5],
the drainage of films with micelles present (e.g., [6, 7, 8]) or with non-Newtonian surface
properties [9, 10]. Drainage of thin films is important in foams, where the properties of foam
as a material may be of interest (e.g., [11, 12]), or where understanding of the behavior on a
smaller scale may be desired [13].

A number of authors have examined thinning of lamella in foams [6–9]; in these papers
the lamella is assumed to be flat and a force balance is used instead of the normal-stress
condition. These works have successfully shown the role of a number of physical effects in
drainage of lamella. However, in this work we are very interested in the deformation along
the film as a part of the solution. Miller and coworkers have studied axisymmetric lamella
drainage with a deformable surface, without the influence of gravity [14, 15]. The stability of
a vertically-oriented soap film was studied in a similar manner by Bruinsma [16]. The flow
of a lamella into a meniscus in a foam was studied using matched asymptotic expansions by
Breward [17]. They analysed the drainage with and without surface viscosity in the presence
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Table 1. The volumetric rate of polyurethane film drainage as
a function of TCP concentration in parts per million (PPM).

[TCP] (ppm) Film drainage rate (×104) (mm3/min)

10 695

60 311

120 33

330 7

of the Marangoni effect and surfactant transport, and they were able to compute exponents for
power law thinning rates.

Our specific interest was in the use of films to model the stability of foam, in particu-
lar, some effects of surfactants on foam stability. The foam system that we concentrated
on was polyurethane foam, the surfactants that we studied were silicone based surfactants.
Polyurethane foam is a multi-billion-dollar-per-year technological and commercial undertak-
ing. Silicone-based surfactants are necessary for the production of this type of foam. The
behavior of these surfactants in polyurethane foams was recently reviewed by one of the
authors [18].

The premise of our work was that operational polyurethane foam, a complex physico-
chemical system, could be adequately modeled by employing draining, vertical liquid films.
This premise had been previously employed by many workers in the area of aqueous-based
foam and films. Addition of surfactant is necessary to the polyurethane foam-fabrication
process in order to preserve the long thin films which drain into the Plateau borders (e.g., [19,
Chapter 7]); achieving an optimal rate of drainage by use of the proper surfactant is necessary
for effective and efficient production of foam. Film drainage which is too rapid leaves one
with a foam of insufficient volume and excessive porosity.

The behavior of surfactants within a foam of film is complex. A key necessity of the
surfactant is to strongly adsorb at the liquid/air interface. In fact, the molecular structure of
the surfactant is specified to achieve this goal. Individual surfactant molecules adsorb at the
interface and then aggregate together to form a coherent monolayer at that interface. There
are a number of mechanical consequences of the monolayer formation. Firstly, the interfacial
(surface) tension is systematically lowered as a function of surfactant interfacial concentration,
until a saturated condition is achieved. However, within a dynamic system such as a film there
is the constant creation of gradients of surface concentration and therefore surface tension.
Through bulk and surface transport of surfactants there is a constant effort to relieve these
gradients. Secondly, the mechanical coherence of the surface gives rise to shear and dilational
surface viscosities.

The interfacial stresses created from interfacial tension gradients and surface viscosity are
necessary to control film-drainage rate, and therefore, foam stability. At the high extremes
of gradients and viscosity, the surface of the film becomes rigid, or tangentially immobile
(e.g., [20]). This behavior results in exceptionally low film-drainage rates and stable (usually
overtly-stabilized) foam. In concept, the rate of film drainage, as a function of the surfactant
effect on interfacial stresses, can be precisely controlled by specification of the molecular
structure and concentation of the surfactant. We have demonstrated this in practice as shown in
Table 1 below. The surfactant employed is labelled TCP. The decrease of the film-drainage rate
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with increase in TCP concentration is consistent with a widely accepted physical model where
the increase in surface concentration translates into the formation of a more mechanically
coherent surface monolayer, therefore, a higher surface viscosity and ultimately, a lower film-
drainage rate. Furthermore, as the TCP concentration was increased, the (Marangoni) flow
patterns on the film surface progressively decreased in both rate and intensity; this is further
evidence of the rigidifying of the surface of the film with an increase in TCP concentration. On
this basis we chose to include surface viscosity and Marangoni effects in the computational
model. Finally, the range of film thicknesses in these experiments spanned the range from
0·2 mm to tenths of microns; intermolecular forces may be expected to be significant for film
thickness on the order of a few hundred nanometers. Therefore, intermolecular forces between
the film surfaces were not included in the model formulation.

In our experiments, a vertically-oriented rectangular wire frame was dipped into a solution
and was then lifted to a fixed height above a cuvette of liquid [21]. Therefore, a thin liquid
film was suspended from the wire frame to the ‘bath’ in the cuvette, and it subsequently
drained back into the bath. The bath was designed to model the Plateau border; the top of
the film was designed to model the middle of a film in a foam. The model most closely
approximated a vertically-oriented lamella with a border at the bottom, but the results were
sufficiently applicable that useful conclusions were made about the effectiveness of surfactants
in foam fabrication as discussed below. Details of the experiment appear elsewhere [21, 22];
the experiment is very similar in configuration to that of Hudales and Stein [23, 24].

In a pioneering study, Mysels et al. [1] gave a description of the draining and thinning
of vertical aqueous soap films. They found that film surfaces could become immobile and
take the shape of downward opening parabolas (concave inward toward the midplane of the
film). These films tended to be several microns thick and drain relatively slowly. For relatively
small surfactant concentration the film boundaries were ‘mobile’; these films drained quickly
and were concave outward (from the midplane of the film). Mysels et al. called these shapes
‘hollow ground.’ When the wire frames had vertical sides, sideways flow into the Plateau
borders at the edges of the film was observed. The flow in the border regions, where thin spots
of film are generated and thicker spots disappear, was termed ‘marginal regeneration’.

In Hudales and Stein’s work [23–25], both two- and three-dimensional features of aqueous
films were measured, and the results were compared with theory that they developed in a
manner similar to Mysels et al. [1, Chapter 5]. They were interested in two-dimensional film
profiles, the three-dimensional shapes of the films, and marginal regeneration at their edges. In
[24, 25], time-independent lubrication-like approximations for the flow in a two-dimensional
horizontal slice of the film were developed. Assumed surface velocity and flow-rate data
were input into this model; film profiles for the transition zone from the film into a vertical
Plateau border were given in [25]. They concluded that their model equations gave good
approximations but were not exact; the approximations did not treat the time evolution of
the films.

Nierstrasz and Frens [26, 27] proposed Marangoni effects as a cause for structures observed
at the edges of vertical films, and they developed a computational model of the draining film.
Their model is two dimensional, includes a soluble surfactant and seems to be focussed on the
region where the film meets the surface of the bath; the film part of the model takes up about a
quarter of the computational domain, with the Plateau border region taking up the remainder.
This is in contrast to our work [28–31] where the entire film above the transition zone and
transition zone are combined into a single model with the film forming the vast majority of the
computational domain. Their computations [27] apparently exhibit jumps of the slope in the
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surface velocity, and localized spikes in the surface concentration, at a point in the transition
area (inside the computational domain). They also speculate that the Marangoni effect may
cause instability of the film near the bath leading to what they call ‘peacock feather’ structures
[1, p. 12] at the bottom of a vertical draining film. These finger-like structures climb up the film
and tend to slow down and widen away from the bath in aqueous solutions; the corresponding
structures in polyurethane films is much wider and slower than in aqueous films. We concur
with their idea that these structures are due to the competition between Marangoni and gravity
effects, but we differ in the mathematical approach to the problem.

The evolution of a vertically-oriented soap film entirely enclosed in a frame was studied
by Schwartz and Roy [32]. They observed that different regions develop similar to those
suggested in [28]. They also included van der Waals forces and found the formation of thin
regions that were interpreted to be black film.

We develop lubrication theory that describes several aspects of this experiment and predicts
film shapes during drainage in detail. A set of nonlinear PDEs describing the time-evolution
of the fluid interface, tangential component of the surface velocity and the transport of sur-
factant along the free surface are derived. A systematic study of the relevant parameters is
conducted so as to recover a range of experimental observations of Mysels et al. [1], as well
as those observed by Snow et al. [21]. We recover, in the limit of large surface viscosity,
the tangentially-immobile case studied previously [28, 33]. For mobile films without large
surface viscosity, transition from a mobile to an essentially immobile film is observed for
increasing surface-tension gradients. This behavior has been observed in several different
physical situations: levelling of a thin liquid-coating layer [34, 35], the dip-coating problem
in the presence of an insoluble surfactant [36] and a tangentially-immobile region of a drop
with a monolayer of insoluble surfactant deforming in an axisymmetric extensional flow [37,
38]. The models discussed in this paper will show how both rigid and mobile behavior can
be obtained in the vertical film context with either significant surface viscous or Marangoni
effects.

In Section 2.1, we give a general two-dimensional formulation of the model we use for the
drainage of the vertical free film [30]. This formulation includes both the lubrication theory for
the thin film and a connection to the bath below the film. We give results from several cases
in succeeding sections that illuminate the results in several limits. In Section 3.1, we give
a drastically simplified model (the tangentially-immobile model [28]) and show how it can
recover the observations of the slowest draining films [1, 21]. The structures observed there
readily serve as a map for interpreting the results that follow. In Section 3.2, we give extended
results that show mobile and rigid results which may be obtained by limiting cases of surface
tension or Marangoni effects. In Section 3.3, we give results for the case with nonlinear surface
properties that are realistic for some aqueous films. In Section 4, we give results [39] that
show both analytically and computationally that large surface viscosity recovers the rigid-film
limit, while small surface viscosity recovers the mobile, fast-draining limit of the experiments
by Snow et al. [21]. This last analysis was performed only on the flat middle section of the
film where mean surface tension could be neglected and Marangoni effects must be assumed
to be weak; this simplification is the only one that requires these assumptions. In Section 5,
we discuss the models and outline areas for improvement.
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Figure 1. Schematic representation of the problem studied. Here d is a characteristic film thickness where gravi-
tational and viscous forces balance; D is the static meniscus radius where gravitational and surface-tension forces
balance; � = d1/3D2/3 is a length scale where all three forces balance.

2. Two-dimensional models

We begin with a derivation for the two-dimensional geometry with nonlinear surface proper-
ties. The model will be reduced to various special cases in order to illuminate the roles played
by various effects in succeeding sections as needed.

2.1. GENERAL FORMULATION

2.1.1. Dimensional problem
Consider a two-dimensional draining film in a Cartesian coordinate system (x̄, z̄) (see Fig-
ure 1); it is hanging from a thin plate at z̄ = 0. Gravity acts in the downward direction so
g = gk, where k is the unit vector pointing in the positive z̄ direction. The free surface of
the thin film is given by x̄ = k̄(z̄, t̄ ) and the top end of the film is assumed to be fixed at
k̄ = k0. The film is assumed to be symmetric about the line x̄ = 0 (the z̄ axis). The equations
of motion and boundary conditions are

∇̄ · v̄ = 0, (1)

ρ

(
∂ v̄
∂t̄

+ v̄ · ∇̄v̄
)

= µ∇̄2v̄ − ∇̄p̄ + ρgk; (2)
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where k = (0, 1), v̄ = (ū, w̄) is the velocity vector and p̄ is the pressure. Here g is the
magnitude of gravitational acceleration, ρ is the density and µ is the dynamic shear viscosity
of the fluid. We assume that ρ and µ are constant.

Boundary conditions for (1) and (2) include the (assumed) symmetry condition at x̄ = 0
given by

ū = w̄x̄ = 0. (3)

The instantaneous location of the free surface x̄ = k̄(z̄, t̄ ) is described by the kinematic
boundary condition

ū = k̄t̄ + k̄z̄w̄. (4)

The normal and the tangential component of the interfacial stress is derived from the Boussinesq-
Scriven surface-stress model [40] and is given by [41, Section 4.2], [42]

−n̄· ‖ T̄ ‖ ·n̄ = 2H̄ σ̄ + 2H̄(κs + µs)∇̄s · v̄, (5)

−t̄· ‖ T̄ ‖ ·n̄ = t̄ · ∇̄sσ̄ + (κs + µs)t̄ · ∇̄s∇̄s · v̄ + ¯̄t · ∇s
(
κs + µs)∇s · v̄, (6)

respectively, for variable surface viscosities. Here, n̄ is the unit outward surface normal and t̄
is the unit tangent vector along the free surface. ‖ T̄ ‖= T̄a − T̄ denotes the jump in the stress
tensor across the free surface where T̄ = −Ip̄ + µ(∇̄v̄ + ∇̄v̄

t
) is the stress tensor and T̄a is

the stress tensor in the outside air phase (assumed to be zero). H̄ is the mean curvature of the
free surface, σ̄ is the surface tension, κs and µs are the surface dilatational and shear-viscosity
coefficients, respectively, and ∇̄s denotes the surface-gradient operator. Surface-differentiation
operators are based on [40, 43, 44].

Accurate surface viscosity measurements for silicone surfactants in polyurethane are dif-
ficult to find at best. These properties may be profitably investigated by the methods of Hirsa
and Lopez [45, 46] using a deep-channel viscometer and by Fuller and co-workers [47, 48]
using a needle viscometer. These methods can reliably determine the surface shear viscosity
µs; the surface dilatational viscosity κs remains difficult to measure as, for instance, discussed
in [41, Chapter 8]. The only description we have of them at this time is that their surface
viscosity can be very high for some surfactants. We choose a form similar to that measured by
Hirsa and Lopez [45, 46]. The functional form used is

κs + µs = (κs + µs)mG(α1�), (7)

where (κs +µs)m is a the surface viscosity evaluated at the reference concentration �̄m and �

is the surfactant concentration. (For hemicyanine on water, the reference value would be �m =
0·856 mg/m2 [46].) G(α1�) is a dimensionless nonlinear function of � such that G(0) = 0.
For our numerical calculations, we use

G = −1 + exp(α1�). (8)

For � close to zero, G is small and increases with �.
For the case when the fluid surface contains a dilute insoluble surfactant, surface tension is

no longer a constant and is assumed to behave according to

σ̄ = σ̄m + βF(α�), (9)
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where σ̄m is the surface tension evaluated at the reference concentration �̄m. β and α (typically
α < 0) are constant material parameters which are related to the range in σ̄ and to the slope of
the equation of state at the inflection point, respectively. The range of concentration allowed
is from that of a clean surface to that of some other state. The other state could be a saturated
surface, or is more likely a phase change as in [45, 46]. F(α�) is a dimensionless function
which represents a nonlinear deviation of σ̄ from σ̄m. For our numerical calculations, we use
an equation of state for surface tension similar to the one used by Hirsa and Lopez [45, 46],
i.e.,

σ̄ = σ̄m + β tanh [α(� − 1)] ,

F = tanh [α(� − 1)] , (α < 0).
(10)

The nearly flat behavior for small � that is implied by this formula is typical of insoluble
surfactants [49]. The inflection point is at � = 1; this is the region where the surface-
tension gradients are maximum. Hirsa and Lopez [45, 46] have measured surface tension up to
� = 1, beyond which their water/hemicyanine system appears to undergo a phase transistion;
we similarly consider � ≤ 1. Generally, such detailed measurements are not available for
polyurethane with silicone surfactant; for a recent review see Snow et al. [18].

The transport equation for the surfactant on the free surface is [40, 43, 44]

∂�̄

∂t̄
+ ∇̄s · (�̄v̄

) = Ds∇̄2
s �̄ − n · j, (11)

where the surface concentration of surfactant is �̄ = �̄
(
k̄(z̄, t̄), z̄, t̄

)
and Ds is the surface

diffusivity. Here, −n̄ · j is the flux of the surfactant between the bulk and the free surface, for
the insoluble case, j = 0.

2.1.2. Nondimensionalization
We will use length scales based on the tangentially-immobile case [28, 50]. The three length
scales are

d =
√

µW

ρg
, D =

√
σ̄m

ρg
and � = d1/3D2/3; (12)

they are the film thickness d, equilibrium meniscus radius D, and the intermediate scale �,
respectively. The velocity scale

W = ρgd2/µ (13)

balances the shear across the film with the gravitational term in the vertical momentum equa-
tion to appear below when the surface is immobile. The equilibrium mensicus radius balances
gravity and surface tension. � is a length scale which balances viscous, gravitatonal and sur-
face tension forces, and has appeared in the context of the dragout problem [50]. Using an
experimentally determined value for d, the corresponding vertical velocity scale is given by
solving for W . Separation of scales occurs with

δ2 = d

�
� 1. (14)

We then introduce the following nondimensionalizations
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x = x̄

d
, z = z̄

�
, t = W

�
t̄, u = ū

δ2W
, w = w̄

W
, k = k̄

d
,

p = δ4�

µW
p̄, � = �̄

�̄m

, σ = σ̄

σ̄m

.

(15)

Substitution of the above dimensionless variables in the equations governing the flow in-
side the film (Equations (1) and (2)) furnishes the following dimensionless problem. Inside
the film, we have

ux + wz = 0, (16)

δ8R(ut + uux + wuz) = δ4(uxx + δ4uzz) − px, (17)

δ4R(wt + uwx + wwz) = wxx + δ4wzz − pz + 1. (18)

On the plane x = 0, symmetry requires u = wx = 0; on the free surface of the film, we have
a nondimensional surfactant transport equation given by

�t + N2
[
δ4kzA(�u) + A(�w)

] = 1

P

[
(δ2N2kzA)2 + (N2A)2

]
�, (19)

where

N := 1√
1 + δ4k2

z

and A := kz
∂

∂x
+ ∂

∂z
. (20)

The kinematic condition becomes

kt − u + kzw = 0; (21)

the tangential and normal components of the interfacial stress condition can be written as

N2
[
2δ4kz(ux − wz) + (δ4uz + wx)(1 − δ4k2

z )
] = −N

M

α
AF

+SG
[
NA(N2δ4kzAu + N2Aw)

]
+N3SAG(δ4kzAu + Aw)

(22)

and

δ6

C
kzzN

3

[
1 + δ4 M

α
F + δ4N2SG(δ4kzAu + Aw)

]
=

2δ4N2
[
ux + δ4k2

zwz − kz(δ
4uz + wx)

]− p,

(23)

respectively. In our scalings, C = δ6 and so the leftmost term in (23) is of unit order. Several
dimensionless groups have appeared and they are listed in Table 2. For the choice of σ̄ given
in (10), we have M = −βαδ2/(µW).

In this work, we wish to study a range of parameter values, in particular for varying M and
S. We are interested primarily in a viscous fluid that is about 80 times as viscous as water, but
it is relatively easy to find parameters for aqueous systems. We shall find that the values of M
may be considered small for values less than about 30, and that S may be considered small
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Table 2. Table of nondimensional parameters and their interpretations. Note that
in our scalings C = δ6 (see 29, 39]).

Number Definition Comparison of forces

Reynolds R = ρW�
µ

inertial
viscous shear

Modified Boussinesq S = (κs+µs)mW/�2

µW/d
surface viscous shear

viscous shear

Capillary C = µW
σ̄m

viscous shear
surface tension

Marangoni M = −
(

∂σ
∂�

)
m
�m

µW
δ2 concentration gradient shear

viscous shear

Péclet P = W�
Ds

advective transport
diffusive transport

for values of 100 or less. For the parameters given in [39], M could be as large as 700 and S
ranged from about 50 to more than 104. The Reynolds number is on the order of 10−7, while
for thicker films it could be as much as 10−5; it may thus be considered small. The Péclet
number is on the order of 104; surface diffusion will be neglected in a number of cases that
follow. For the films of interest to us, the value of δ is typically around 10−1.

2.2. LUBRICATION THEORY

We look for solutions in the form of a regular perturbation expansion in powers of δ4:

(u,w, k, p, �) = (u,w, k, p, �)(0) + δ4(u,w, k, p, �)(1) + . . . (24)

Substituting the series expansions in the non-dimensional equations gives to leading order in
the bulk (inside the film)

u(0)
x + w(0)

z = 0, (25)

0 = −p(0)
x , (26)

0 = w(0)
xx − p(0)

z + 1. (27)

These are subject to the symmetry condition at x = 0,

u(0) = w(0)
x = 0. (28)

At x = k(0)(z, t) we have

k
(0)
t − u(0) + k(0)

z w(0) = 0, (29)

−M

α
AF+SG

[
A(N2δ4k(0)

z Au(0)+N2Aw(0))
]+N2SAG

(
δ4k(0)

z Au(0)+Aw(0)) = Nw(0)
x ,

(30)

κ(0) = −p(0), (31)
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where

κ(0) = k(0)
zz N3 = k(0)

zz(
1 + δ4k

(0)
z

2
)3/2 (32)

is the curvature of the film. Previous work [51, 52] has shown that it is possible to keep the
full curvature in the normal-stress condition and integrate through the matching region onto
the static meniscus; our model relies on those results. In a strict asymptotic sense, this is not
valid; on the other hand, the stress conditions contain all the terms necessary to match the film
onto the meniscus.

Using Equations (27), (31) and symmetry at x = 0, we obtain

w(0) = −(1 + κ(0)
z )

x2

2
+ B(z, t). (33)

We define

w(S)(z, t) :=
[
−(1 + κ(0)

z )
k(0)2

2
+ B

]
, (34)

where w(S) is the velocity along the free surface. Equation (30), after dropping the superscript
(0), becomes

S
(
Gw(S)

z

)
z
+ 1

N
k(1 + κz) − 1

N2
MF��z = 0. (35)

From the kinematic condition we obtain

kt +
[
kw(S) + k3

3
(1 + κz)

]
z

= 0. (36)

This evolution equation is coupled with the equation for surface velocity, Equation (35) and
the surfactant transport equation given by

�t + N2

[
�w(S) − 1

P
N2�z

]
z

= 0. (37)

We have retained some normalization factors, i.e., powers of N , in both the surface velocity
and the surface transport equation for �, because we kept the full curvature term, κ . These
factors would normally be unity from standard lubrication theory. Post facto justification for
retaining the normalization terms has been given in [29]. Thus the leading-order problem is
governed by Equations (35)–(37).

By incorporating surface viscous effects into our model, we have a set of nonlinear PDEs
at leading order that fully describe the evolution of the free surface. While retaining inertial
terms near rupture is desirable [53–57], we do not believe these terms are important in our
situation because we are not near rupture. By the definition of surface velocity, w(S)(z, t), we
have introduced a natural variable; retaining the unknown B(z, t) causes fifth-order derivatives
of k to appear. Such higher-order derivatives would make our computations to follow much
more difficult. This type of formulation has been used in [58], for example.

2.2.1. Boundary conditions
Boundary conditions for the film thickness, k(z, t), surface velocity, w(S)(z, t), and the sur-
factant concentration, �(z, t), are specified as follows.
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At the upper end of the film, i.e. z = 0, we specify k(0, t) = 1 because the film is assumed
to be fixed to the wire frame. We also require that there be no flux through the top of the film,
which gives us

κz(0, t) = −1, (38)

w(S)(0, t) = 0. (39)

Assuming no surfactant flux at z = 0, we have

�z(0, t) = 0. (40)

At the bottom we now must match onto the static meniscus. The virtually static meniscus
below is governed by the Young-Laplace equation, i.e.,

κz = −1. (41)

Solutions of the Young Laplace equation for two-dimensional menisci are parametrized by γ ,

γ

δ2
= κ2 + 2kz√

1 + δ4k2
z

, (42)

a constant in the first integral of Equation (41): for an infinite bath at the bottom of the film,
we have γ = 2. If we think of specifying an initial condition where we fix kz, we may then
use Equation (42) to specify kzz for an infinite bath via

kzz =
√√√√( γ

δ2
− 2

kz√
1 + δ4k2

z

)
(1 + δ4k2

z )
3
. (43)

We specify α and kz at the bottom of the film, and kzz is then known [42, 52]; these values
of kz and kzz are the boundary conditions for k at the bottom of the film. A typical choice for
results given below is the specific choice

kz(L, t) = 10. (44)

Imposing kz and kzz at the end of the domain is an asymptotic ‘patch’ because the solutions
only agree at a single point. In standard matched asymptotics, there is a finite region of overlap
between the two solutions. The patching will conserve the amount of surfactant over the film
region and it conserves surfactant over the entire fluid surface (union of film and bath surfaces)
as may be verified by a simple integration along the fluid surface. However, the surfactant
concentration may jump across the patch point from the film side to the meniscus side. We
choose to use this approach anyway because this choice will accentuate any effect of surfactant
build-up at the bottom of the film as it is washed down during drainage, and we believe this
effect may contribute to patterns observed in experiment.

Since the meniscus at the bottom is static, we also have w(S) = 0 and no surfactant flux,
i.e.,

�z = 0. (45)

This furnishes the necessary boundary conditions at the two ends of the film for the model
equations.

2.2.2. Initial conditions
For all results to follow, we consider the initial shape



292 R.J. Braun et al.

k(z, 0) = 1 + s0z, 0 ≤ z ≤ L, (46)

where L = 37·5 is the length of the computational domain and s0 = 0·23. The initial
surfactant concentration is chosen to be either a linear or a hyperbolic tangent function of
z; it will be specified in the appropriate section. The variation in the slopes of � contributes to
the Marangoni effect.

An independent initial condition cannot be specified for the surface velocity; however, for
numerical solution we use later, we must find an initial condition that is consistent with those
for k(z, 0) and �(z, 0).

3. Results for the whole film

3.1. TANGENTIALLY IMMOBILE FILM SURFACE

In the limit of large S or M, the surface tends to become immobile tangentially; details of
taking the limit may be found in [28–30, 39]. Briefly, we can consider the tangential-stress
boundary condition to be replaced with the kinematic requirement that t · v(s) = 0; here t is
the unit tangent vector and v(s) is the velocity of a point in the surface of the film. This forces
the surface velocity to be zero; transport of surfactant thus becomes irrelevant. In this limit,
we are left with a single nonlinear PDE for the surface of the film. The problem considered
and the results given are reported from [28].

3.1.1. A model for the whole film
When the average surface tension is significant in the model, a fourth-order nonlinear PDE
must be solved, namely,

kt +
{
k3

3

[(
kzz(

1 + δ4k2
z

)3/2

)
z

+ 1

]}
z

= 0. (47)

At the upper end of the film we still have k(0, t) = 1. We also require that there be no flux
through the top of the film, so that[

kzz

(1 + δ4k2
z )

3/2

]
z

= −1 (48)

there for all times.
At the bottom, we must match onto the static meniscus; for this purpose, we use Equa-

tion (43) and a specified value of the slope at z = L.
In order to solve the problem, we discretize the domain with a uniform grid. Inside the

domain, centered finite-difference approximations are used to approximate the spatial deriva-
tives. At the ends, appropriate second-order-accurate finite-difference formulae are used that
are not centered. Some details of the boundary treatment are below; full details can be found
in [28]. The resulting system of differential equations is then solved using DASSL [59]; this
public-domain code provides efficient and robust solution to this stiff problem using adaptive
BDF time stepping.

In the numerics to follow we will use the specified slope and the resulting second derivative
to determine two fictitious points outside the computational domain, which ends at zn = L.
The centered-difference approximation to the second derivative will determine kn+1; a one-
sided difference for kz will determine kn+2. For the numerical approximation at the top of
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Figure 2. Film shapes k(z, t) vs. z with L = 37·5, h = 0·05, kz(L) = 5 and δ = 0·2. The initial slope of the film
was 0·23.

the film, we have two options to solve for the fictitious point k−1 at z = −h after using
finite-difference formulas of the right form; here h is the mesh spacing. We could (a) solve
a nonlinear equation given by the discrete form of the boundary condition or (b) use a per-
turbation expansion of the boundary condition for δ4 � 1. We used the latter for this work
because of its simplicity, and because it was sufficiently accurate for the task at hand. The
explicit formula for the ficitious point is then

k−1 = k
(0)
−1 + δ4k

(4)
−1 + O(δ8). (49)

The O(δ8) terms are neglected; we find

k
(0)
−1 = 1

3

(
2h3 + 10k0 − 12k1 + 6k2 − k3

)
(50)

and

k
(4)
−1 = h

4

(
k1 − k

(0)
−1

)2 − 1

h2

(
k1 − k

(0)
−1

) (
k1 + k

(0)
−1 − 2k0

)2
. (51)

The term k
(0)
−1 is identical to that found when one must satisfy the condition kzzz = −1 at the

top of the film.
The following figures give results for the case of matching past the minimum value of the

film thickness. Figure 2 gives the evolution of a film with kz(L, t) = 5 and δ = 0·2. There are
four distinct regions that may be seen in this time sequence. At the top, there is a meniscus
of size � where surface tension, gravity and viscous effects all balance. Below that, there is
a region where there is very little curvature; in that region, we shall see that surface tension
plays a negligible role. The length of this region is on the order of the static meniscus radius
D. Below that, there is a capillary wave which appears to be a sequence of bumps and dips;



294 R.J. Braun et al.

we shall discuss that below. Finally, at the bottom there is a static meniscus that is the top of
the bath. The length scale of that region is given by D. The formation of these four regions
occurs again and again in the sequence of models that we develop here.

The capillary wave above the static meniscus is not an artefact of the numerical solution,
but is a solution to the continuous PDE problem. This capillary wave was analyzed in [28],
following the analysis of Jensen [60]. The analysis predicts different power laws for the
thinning of the relatively flat interior of the film, and for each bump or dip. The exponents
for the decay of the thickness of the middle of the film, the highest bump and the deepest dip,
were −0·5, −0·45 and −0·6, respectively. The evolution of the bumps and dips is essentially
the same as the result from the analysis; the values obtained in the computation were −0·49,
−0·47 and −0·59, respectively.

3.1.2. Further results for the immobile film
This is just one example of the profitability of viewing the film as composed of separate
regions. Section 4 will explore an approximation to the large middle region of the film, where
mean surface tension does not contribute to the evolution. Perhaps the most basic fact that one
could take away from this view is the following. In order to draw a film, one could estimate
the height to raise the frame for the film by computing the static mensicus radius; the height
necessary to create a film should be at least a few times larger than this length scale. Further
results are given in [28].

3.2. THE WHOLE FILM WITH CONSTANT SURFACE VISCOSITY

We now wish to consider models to where the surface may be mobile or approximately rigid.
It is instructive to consider the case where there is a constant surface viscosity and a linearized
surface-tension dependence on surface concentration. Following this case, we will consider
nonlinear dependence on the surfactant concentration.

For constant surface viscosity we have G = 1 and for a linear surface tension we have
F� = 1. We can thus simplify Equations (35)–(37) to obtain

Sw(S)
zz + (1 + κz)k

N
− M

N2
�z = 0, (52)

kt +
[
kw(S) + k3

3
(1 + κz)

]
z

= 0, (53)

and

�t + N2

[
�w(S) − 1

P
N2�z

]
z

= 0. (54)

Only the equation for the surface viscosity (Equation (35), the tangential-stress condition) has
been modified.

The boundary conditions for the film thickness, k(z, t), surface velocity, w(S)(z, t), and the
surfactant concentration, �(z, t), and the film thickness k are the same as those discussed in
Section 2.2.1.

In order to solve these nonlinear coupled PDEs we have used a second-order accurate
finite-differencing scheme to discretize the spatial derivatives leaving the time derivative con-
tinuous. The resulting equations are in the form of a differential-algebraic system; to solve
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Figure 3. Film shape at t = 16 for several S (upper right). The film is much thinner for small values of S because
the free surface is mobile. For large values of S, the free surface becomes practically immobile.

them we have used the package DASSL [59]. This method will be used to obtain all of the
remaining results. For all results to follow, we consider the initial shape k(z, 0) = 1 + s0z,
0 ≤ z ≤ L, where L = 37·5 is the length of the computational domain and s0 = 0·23. A
linear free-surface shape is a convenient choice and the choice of initial conditions does not
affect the long-time behavior of the film. The initial condition for the surface concentration is

�(z, 0) ≡ �0(z) = g0 + (g1 − g0)
z

L
; (55)

here g0 and g1, is the surfactant concentration at z = 0 and z = L, respectively. A consis-
tent initial condition for w(S) must be computed for the code DASSL; solving the discretized
equation for w(S), using the initial free-surface shape supplies consistent initial values.

3.2.1. Constant surface viscosity only
If we redefine the Marangoni number by δ2M or if � = constant, then any contribution of
Marangoni stresses to the dynamics from Equation (37) is eliminated. Then we can neglect
surfactant transport and we have the two coupled equations (35) and (36), the equations for
the surface velocity w(S) and the evolution of the interface shape k, respectively. In later parts
of this paper, we shall designate this limit with the shorthand M = 0.

Free-surface shapes at time t = 16, for several values of S in the range 102 to 106 with
kz(L, t) = 10 are plotted in Figure 3. As S decreases, drainage is much faster and the film
thins more rapidly; free-surface shapes for smaller S take on the typical concave-out shapes
for mobile films given in Chapter IV of Mysels et al. [1].

In Figure 4, comparison of w(S) is made for different values of S ranging between 106 −
102 at t = 16. For large S, w(S) is almost zero, and the film is practically immobile. As S
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Figure 4. w(S) at t = 16 for several S (upper right). The flow is much faster for small values of S and becomes
practically zero for large values of S.

decreases; the flow along the surface is much faster; this makes the free surface more mobile,
which makes the film thin faster.

Further results along this line are given in [29]. We note that this is only one way to span
the behavior from mobile to rigid-surface behavior. The Marangoni effect can also make the
film surface rigid, and we report results on this next.

3.2.2. Constant surface viscosity and Marangoni effects
We now consider the case where the Marangoni effect and surfactant transport is included in
the model. The tangential shear stress includes the stress due to the change of surface tension
in the presence of concentration gradients, and so Marangoni effects are included.

The initial conditions are as before for k and w(s); for the concentration we have

�(z, 0) = 1 + tanh(z − L + 2)

2
. (56)

For this kind of initial condition the problem bears some resemblance to the surfactant-
spreading problem [63]. We have also studied the case with a linear initial profile for the
surfactant distribution [31]; there is no qualitative difference in the results.

Marangoni effects have a substantial impact for smaller values of S, retarding surface
drainage and increasing film thickness; free-surface shapes for varying M, with S = 102,
P = 102 and t = 32 are shown in Figure 5. For small M, surface-tension gradients are too
weak to retard drainage and the film thins rapidly. As M increases, surface-tension gradients
become more prominent and transistion from a mobile to an essentially immobile film is
observed (M = 102). As M → ∞, w(S) goes to zero and the surface becomes rigid. Figure 6
plots the surface velocity, w(S), at t = 32 for varying M with S = 102 and P = 102. For
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Figure 5. Film shape at t = 32 with S = 102 and P = 102 for several values of M (shown in the upper right).
The film in much thinner for small values of M (surface tension gradients negligible). For large values of M,
Marangoni effects are stronger, drainage is retarded and the free surface becomes immobile.

Figure 6. w(S) at t = 32 with S = 102 and P = 102 for several values of M (shown in the upper right). For large
values of M, Marangoni effects are strong enough to cause flow reversal, i.e., Marangoni flow, enhancing film
thickness. For smaller values of M, Marangoni effects are too weak to retard drainage and the film thins rapidly.
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Figure 7. � at t = 32 with S = 102 and P = 102 for several values of M (shown in the upper right). For large
values of M, Marangoni flow is strong enough to drag the surfactant up the film. For smaller values of M, w(S) is
large and the surfactant is swept to the bottom of the film.

large values of M, Marangoni effects are strong enough to cause the flow to reverse , i.e.,
w(S) < 0, retarding drainage and enhancing film thickness (Figure 5). For smaller values of
M, the Marangoni effect is too weak to retard drainage and the film thins rapidly. Figure 7
shows the surfactant concentration, �(z, t), at t = 32 for several values of M with S = 102

and P = 102. For large values of M, the Marangoni effect is strong enough to drag the
surfactant up the film. For smaller values of M, w(S) is large and the surfactant is swept to the
bottom of the film.

We now discuss the time evolution and power-law behavior of k. For very large M, we
find that the exponent of the film thickness tends to be a power-law with t−0·5, which is the
rigid limit. For smaller M, we find that the thinning of the film tends to roughly t−0·9, which
is the mobile limit. For M = 102 we have computed the exponent at the elevations z = 10,
z = 18·75 and z = 25 which are representative of the top, middle and bottom portions of
the film. At z = 10, for early times, the top portion of the film is essentially mobile. At
later times, the decay of the thickness tends to about t−0·6 behavior at all three locations;
this implies that the film has become approximately rigid. This depicts the transistion from
a mobile to an essentially immobile behavior as seen in Figure 5. Snow et al. [21, 64] have
observed intermediate power-law behavior within the range −0·7 to −0·8. Based on a variety
of calculations (not shown), our intermediate power law exponents lie between −0·5 and
−0·6.



Models for gravitationally-driven free-film drainage 299

3.3. NONLINEAR SURFACE PROPERTIES

We now compute solutions to the model derived in the formulation section of the paper
where both the surface tension and surface viscosity depend nonlinearly on the surfactant
concentration.

The initial conditions are as in the previous section except that we have imposed the linear
initial concentration profile as described in Section 3. These initial conditions are a convenient
choice and did not affect the long-time behavior of the film in prior papers [28, 29, 39].
However, for the results of this section, there may be cases where the evolution is rapid enough
that this no longer is true.

Figures 8–10 plot k, w(S) and �, respectively, as functions of t . The parameter values used
for this case are as follows:

S = 30, M = 103, P = 104, α = −6·2, α1 = 1·0, g0 = 0·5 g1 = 0·7.
SG ranges approximately between 1–50 and MF� is roughly between 500–1000 for �

varying between 0·01–0·9. Near the top of the film the Marangoni effects and the surface
viscous effects are not as large compared to the middle and the bottom. This low shear from
surface viscous and Marangoni effects causes rapid downward surface flow (see Figure 9) and
the film thins rapidly near the top (see Figure 8). This rapid drainage sweeps all the surfactant
near the top to the middle and lower regions of the film (see Figure 10). This enhances both the
Marangoni and the surface viscous effects in the middle of the film. Significant shear stresses
are generated and this causes the surface flow to reverse (see Figure 9). This flow reversal
drags the surfactant up the film which drives the travelling surfactant front (see Figure 8) to
the top of the film. This front, like the constant surface viscosity case, is also approximately
rigid behind it and mobile in front of it.

Note that all of the concentration variation is now confined near the top of the film, and
this localization has minimized the impact of the conditions used at the bottom of the film.
This sort of localization does not occur for the case with linearized properties studied in the
previous section.

4. Results without mean surface tension

We now turn to investigating how much of the film drainage behavior can be deduced without
having do deal with the ends of the film. In order to do this, we must study the approximation
which governs the long, relatively flat, middle region of the film. In this region, we develop
a simpler model which can still capture a mobile-to-rigid transition. We begin by seeing the
reduction in the tangentially immobile case, and then move on to include mobile surfaces.

4.1. TANGENTIALLY IMMOBILE CASE

One can rescale Equation (47) with z = Z/δ, t = T /δ and k(z, t) = K(Z, T ) with Z and T

both O(1), to arrive at a model which does not include the high derivatives associated with
surface tension at leading order in δ [28]. This model approximates the long middle region of
the film between the meniscus at the top and the capillary wave at the bottom. One obtains

KT + K2KZ = 0, (57)

which is a well-known nonlinear wave equation [62, Chapter 2] and has arisen in a variety of
contexts (e.g., [5]). A solution to Equation (57) is given implicity by
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Figure 8. k(z, t) for several t (upper right). The travelling front seen in the top portion goes all the way to the top
of the film. The surfactant front is again driven by shear stresses from surface-tension gradients which gradually
build up from the middle and lower regions of the film (there is also considerable shear from the surface viscous
effects for this case).

Figure 9. w(S)(z, t) for several t (upper right). The predominately downward surface flow near the top sweeps
that region almost clean of surfactant and increases the concentration in the middle and lower regions of the film.
The resulting shear from surface-tension gradients and the surface viscous effects cause flow reversal; this in turn
drags the surfactant up the film helping to drive the travelling surfactant front seen in Figure 8.
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Figure 10. �(z, t) for several t (upper right). The downward surface flow near the top of the film sweeps that
region almost clean of surfactant and increases the concentration near the middle and lower regions of the film.
Significant shear from surface-tension gradients and also surface viscous effects occur in the middle and lower
regions causing the film to thicken and the flow to reverse. As time increases, the reverse flow drags the surfactant
up the film helping to drive a travelling front seen near the top (see Figure 8).

K(Z, T ) = K0( Z − TK2(Z, T ) ). (58)

Here K0(Z) ≡ K(Z, 0) is the initial profile of the film. The solution says that the speed of
a given thickness of the initial profile is proportional to the square of the thickness. For an
initial profile that has positive slope everywhere, the higher parts move faster than the lower
parts but no shocks form. For a linear initial condition and for T � 1 and Z bounded away
from the origin [28], we find to leading order that K ∼ √

Z/T . This agrees with the analysis
Mysels et al. [1] and an analysis by Pernisz [61], and it gives the thinning rate for the film
in the slow draining limit from this drastically simplified model. It is also worth noting that
the linear initial condition is a convenient choice and still gives results that are relevant to the
experimental results for longer times [22].

A similar approach can be applied to the more general model with constant surface vis-
cosity and a linearized surface viscosity. We call the resulting equations the ‘flat film’ model.
We will first consider only surface viscous effects, neglecting Marangoni effects. This could
correspond to a high concentration of surfactant uniformly distributed along the free surface.
Then we will consider both surface viscous and Marangoni effects.

4.2. MOBILE FLAT-FILM MODEL

We now consider the case where the film is mobile. The surface can now advect surfactant
and modify the concentration field. The tangential shear stress includes the stress due to the
change of surface tension in the presence of concentration gradients, and so Marangoni effects
are included.
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Rescaling Equations (35)–(37) with

z = Z

δ
, t = T

δ
, S̄ = S

δ2
and M̄ = M

δ
, (59)

where T , Z, S̄ and M̄ are O(1), k(z, t) = K(Z, T ), w(S)(z, t) = W(S)(Z, T ) and �(Z, T ) =
�(z, t); we arrive at

KT +
[
KW(S) + K3

3

]
Z

= 0, (60)

S̄W
(S)
ZZ + K + M̄�Z = 0, (61)

�T + [
�W(S)

]
Z

= 0. (62)

Here we have also let P → ∞ to eliminate surface diffusion from the problem.
The boundary conditions are given by

K(0, T ) = W(S)(0, T ) = �(0, T ) = W
(S)
Z (L, T ) = 0. (63)

where L is specified as data, and results are computed for a given value.
This choice of the boundary condition for K at Z = 0 can be motivated by considering this

problem without surface tension as an ‘outer’ approximation to the meniscus that is developing
close to the wire frame where surface tension is important [28]. The dynamic behavior of the
film thickness in this region is K → 0 for long times. For a tangentially-immobile film, Braun
et al. [28, 33] have shown that this approximation is in good agreement with the problem
including surface tension and gets better with increasing time.

The boundary condition for W(S) at Z = L can be determined by looking at the results
from the whole film. At the top where the film connects to the wire frame, W(S) = 0; at the
bottom where the film connects to the static meniscus, W(S) should also equal zero. Hence,
W(S) attains its maximum somewhere within the film and that is taken as the end of the
computational domain, Z = L (say), in our model. The initial condition for K is

K = K0(Z). (64)

The initial conditions specified for K and � are

K(Z, 0) ≡ K0(Z) = S1Z (65)

and

�(Z, 0) ≡ �0(Z) = g0 + (g1 − g0)
Z

L
. (66)

Here g0 and g1, is the surfactant concentration at Z = 0 and Z = L, respectively. For all
results presented below, we will have S1 = 0·23 and L = 20. The length of the domain
reflects the fact that the equations are now on the scale of the static meniscus radius and that
the film must be at least a few times this length in order for the results to be valid.
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Figure 11. Film shape with S̄ = 106 for several values of T (shown in the upper right). The initial film is
K0 = 0·23Z, the film thins and becomes parabolic as time progresses. Free surface shapes match extremely well
to those obtained using large S̄ asymptotics (see Section 4.2.3).

4.2.1. Results with M̄ = 0
In this limit, the evolution of the surface concentration decouples from the problem, and need
not be considered. For our choice of initial conditions and M̄ = 0, we have W(S)(Z, 0) =
S1Z(L2 − Z2/3)/(2S̄).

Free-surface shapes as a function of time for S̄ = 106 and M̄ = 0 are shown in Figure 11.
The initially-linear film thins and becomes parabolic in shape as time progresses. This type of
free-surface shape agrees well with the results from the tangentially-immobile case [28, 33].
In the limit of S̄ → ∞, the free-surface shape tends asymptotically to that of a tangentially-
immobile film; this is discussed in more detail in [39]. The downward parabolic shape agrees
with the typical rigid film profiles given in Chapter III of Mysels et al. [1].

Lowering the value of S̄ in this model is a way for the surface to remobilize and speed up
the film drainage. Free-surface shapes at time T = 16, for several values of S̄ in the range 1 to
106, are plotted in Figure 12. The shapes for smaller S̄ take on the typical shapes for mobile
films given in Chapter IV of Mysels et al. [1], which they described as ‘hollow ground.’

In Figure 13, comparison of W(S) is made for different values of S̄ at T = 16. The flow
along the surface is much faster as S̄ decreases; this makes the free surface more mobile,
which makes it thin faster.

4.2.2. Results with M̄ �= 0
The nonlinear coupled PDEs, (60), (61) and (62), are again written in the form of a differential-
algebraic system as done in Section 4.2.1 and solved using initial conditions K0(Z) = S1Z

and �0(Z) = Z/L, with S1 and L as defined before. An initial linear surfactant concentration
profile is again a convenient choice and this does not affect the long-time behavior of the film.
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Figure 12. Film shape at T = 16 for several values of S̄ (shown in the upper right). The film in much thinner for
small values of S̄ because the free surface is mobile. For large values of S̄, the free surface becomes practically
immobile and stability of the film is greatly enhanced.

Figure 13. W(S) at T = 16 for several values of S̄. Surface velocity becomes appreciable for small S̄, the film is
more mobile and thins rapidly.
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Figure 14. Film shapes at T = 16 for several S̄ and M̄ (shown upper right). Concentration gradient effects
are insignificant for S̄ = 106 hence the film shapes are indistinguishable for different M̄ (rightmost curve). A
significant increase in film thickness is observed for the intermediate value of S̄ = 103, where concentration
gradients play a significant role (middle curves). For S̄ = 102 (and smaller), the film is slightly thicker for larger
M̄ due to weak concentration-gradient effects (leftmost curves).

In Figure 14, film shapes at time T = 16 are shown for various S̄ and M̄. For S̄ = 103,
the film is significantly thicker for M̄ = 10 than for M̄ = 10−1. For S̄ = 102, the film
is slightly thicker close to the bottom (Z = L) for M̄ = 1 than for M̄ = 0. As the film
gets more mobile, interfacial concentration gradients significantly affect the flow, and weakly
affects the free-surface shapes. Marangoni effects have a negligible effect on W(S) at a large
value of S̄, e.g., S̄ = 106. Figure 15 plots the surface velocity at T = 16 for varying S̄ and
M̄. For S̄ = 103, the flow is slower for M̄ = 10 than for M̄ = 1; this is due to Marangoni
effects. For S̄ = 102 there is no appreciable change in the surface velocity. This indicates that
Marangoni effects are more prominent at some intermediate values of S̄ and M̄ in this model.
Figure 16 shows the surfactant concentration at T = 16 for several values of S̄ and M̄. There
is a marked change in the surfactant concentration profiles as S̄ decreases. This change is due
to increasing W(S) as S̄ decreases; the increasing surface velocity sweeps out more surfactant.

This model suffers from the limitation that the Marangoni effect must be relatively weak
for the above-specified problem to hold. If the Marangoni effect is too strong, fluid may enter
the film from the bottom, and the boundary conditions given above may not be used. For more
detail, see [39].

We now discuss the time evolution and power-law behavior of K. In the flat-film model
only, M̄ must remain small and thus plays no role in the limiting cases of the drainage. For
very large S̄, we find the exponent of the film thickness tends to a power law that decays like
T −0·5; for smaller S̄, we find the thickness decreases like T −1. The large S̄ value agrees very
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Figure 15. W(S) at T = 16 for several S̄, with M̄ given in the upper right. The Marangoni effect is insignificant for
large S̄ because W(S) is indistinguishable for different values of M̄; the left edge of the plot is two superimposed
curves. For S̄ = 103 we see that the flow slows down significantly, causing a significant increase in film thickness
(see Figure 14). As S̄ decreases, there is a slight decrease in surface velocity contributing to a weak thickening in
the film shape (rightmost curves).

well with the tangentially-immobile case [28, 33]. The smaller S̄ value is again consistent with
faster drainage.

These exponent values are very close to experimental values obtained by Snow et al. [21],
i.e. −0·47 and −0·92 for their most rigid and mobile films, respectively. This agreement
with the range of values of the experimental thinning rates provides strong support for this
modeling approach.

4.2.3. Asymptotic results: large and small S
We have also studied the limiting cases of large and small S̄ using perturbation methods. For
S̄ � 1, the analysis shows how to obtain the T −1/2 thinning for these nearly-tangentially-
immobile films. The leading-order surface velocity is zero and the leading-order surfactant
concentration is constant; corrections to these quantities may be found analytically. For
S̄ � 1, the analysis gives similarity behavior for the T −1 thinning rate, and a boundary-
value problem to solve (numerically) to obtain the surface shape, velocity and concentration.
Details of these analyses can be found in [39].

4.2.4. A connection with extensional flow
For the case when S̄ � 1, we can show an overlap in the behavior that occurs in the long-
time behavior. We postulate an intermediate regime where both extensional and shear-flow
components contribute equally to the dynamics of the problem. Use the decomposition

w(x, z, t) = w1(x, z, t) + w(S)(z, t), (67)
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Figure 16. �(Z, 16) for several S̄ and M̄ as shown in the upper right. For large S̄, W(S) is small and � remains
unchanged. As S̄ decreases, W(S) increases and the � profile is strongly affected. There is a significant difference
in concentration profiles for S̄ = 103.

where w1 is the shear component that satisfies the no-slip condition on the free surface and
w(S)(z, t) is the extensional component (as, for instance, in [57, 55, 32]). In order for these two
contributions to have a comparable effect, the required physical balance must be w(S)

zz ∼ w1xx .
The velocity scales are thus related according to

W(S) = W

δ4
, (68)

for the extensional (or slug-flow) scale W(S) and the sheared part the velocity scales with W

as defined in Equation (13). The following rescalings are also appropriate:

ũ = δ4u, t̃ = t

δ4
, �̃ = δ4�, S̃ = S̄

δ4
, M̃ = M̄

δ4
, P̃ = P̄

δ4
, (69)

Substituting these rescalings, together with Equations (67) and (68), in Equations (16)–(23)
gives the following leading-order problem in the film

ũx̃ + w̃
(S)

z̃
= 0, (70)

0 = −p̃x̃ + ũx̃x̃ , (71)

0 = −p̃z̃ + w̃
(S)

z̃z̃
+ w̃1x̃x̃ + 1. (72)

These are subject to the symmetry condition at x̃ = 0,

ũ = w̃1x̃ = 0. (73)
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At x̃ = k̃(z̃, t̃) we have

k̃z̃z̃ = −p̃ + 2ũx̃ , (74)

M̃�̃z̃ + S̃w̃
(S)

z̃z̃
= 2k̃z̃(ũx̃ − w̃

(S)

z̃
) + (ũz̃ + w̃1x̃), (75)

k̃t̃ − ũ + k̃z̃w̃
(S) = 0. (76)

Using a similar procedure as in Section 4.2 and neglecting average surface tension effects, we
obtain the rescaled flat-film equations

S̃w̃
(S)

z̃z̃
+ 4

(
k̃w̃

(S)

z̃

)
z̃
+ k̃ + M̃�̃z̃ = 0, (77)

k̃t̃ +
(
k̃w̃(S)

)
z̃
= 0, (78)

�̃t̃ +
(
�̃w̃(S)

)
z̃
− 1

P̃
�̃z̃z̃ = 0. (79)

When compared to Equations (60)–(62), the extensional term now appears in the tangential-
stress balance (alternatively, the equation for the surface velocity), while the gravitational term
in Equation (78) for k̃ does not. However, one can again seek solutions as an expansion in pow-
ers of t̃−1 as described above. The terms that contribute at leading order in the Equations (77)
–(79) are precisely the common terms with the flat-film formulation of Section 4. Hence, at
long times, one would expect the same leading-order behavior from either of the regimes we
have given, namely one which includes extensional-flow effects or not.

5. Discussion

5.1. OUR WORK

We have presented models for vertical film drainage that span the range from mobile to rigid
behavior. The transition from mobile to rigid behavior could occur via either strong surface
viscous or strong Marangoni effects. While the rigidification of a free surface has been calcu-
lated via Marangoni effects (e.g., [32, 34, 38]), we consider it a strength of our model that we
can include surface viscosity and study its interplay with other effects.

Our work has studied in detail the different regions of the film that develop during the
evolution. The development of the different regions has allowed quantitative study of the dif-
ferent roles they play and the dominance of different physical effects in each. The interchange
of different dominant balances in the bumps and dips above the bath have been studied in [28];
each bump and dip has a different balance and a different exponent for thinning. The long flat
middle region may profitably be studied by scaling the lengths and times to eliminate the
contribution of mean surface tension [39]. This approach illustrates the roles of minimal sets
of physical effects necessary to achieve the fast and slow draining behavior in vertical films.
The roles of nonlinear surface properties as opposed to a linearized approximation to surface
properties has also been investigated [29], with localization occuring in the cases with nonlin-
ear properties [30] that may be necessary for the complex behavior observed experimentally
in the transition zone [1, 21, 26].
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The results show a film composed of several regions; moving vertically downward, we find
an upper meniscus, a long ‘flat’ middle, bumps and dips, and finally a static meniscus region.
The bumps and dips (or capillary wave) end in the transition region between the thin film
and the bath (where the static meniscus region is assumed). The static meniscus region has
been taken to be analogous to a Plateau border region. While this analogy and film structure
works well for the rigid case, the mobile case may be more difficult for making comparisons.
For a mobile film draining horizontally into a Plateau border, the sequence of bumps and
dips may be absent [24, 25]. This may be a result of the absence of a gravitational effect
in the horizontal drainage. The bottom of the images in Figure 1 in [23] would be a direct
comparison with theory of this paper, but the transition region at the bottom of their film is
not investigated closely enough for comparsion. We do not believe that was the intention of
the investigation in [23] in any case; their intent was to investigate marginal regeneration on
the vertical sides of the film. We also note that in the study of Breward [17, Chapter 5], there
could be either monotonic or nonmonotonic profiles for the film connecting to the Plateau
border in the absence of gravity, depending on the conditions of the analysis.

We are now in a position to make a closer comparison with the work of Nierstrasz and Frens
[27]. They developed evolution equations for surface velocity, film thickness, and surface and
bulk concentrations. They find concentration gradients in the transition zone between the thin
film and a Plateau border region in the bottom of the film. The film comprises about one
quarter of the computational domain in their work, whereas in our work the film occupies
the vast majority of the computational domain. In the Plateau border, Neirstrasz and Frens
appear to abandon the conservation equation for solute inside the film and enforce a con-
stant concentration in this region (second paragraph in Results section); we believe this is
the source of the rapid change in the dependent variables and that this is the reason that the
concentration gradient in the transition region appears to be stuck there (unable to move with
the surface velocity it generates). In our model, concentration gradients also generate a surface
velocity, but they can interact and the concentration gradient is free to be advected within the
transition zone and film. While a soluble surfactant is considered in [27], the mathematical
implementation with a connection to the Plateau border at the bottom of the film appears to
be problematic.

5.2. OPPORTUNITIES

5.2.1. Extensional flow regimes
This work is based on the scaling of the tangentially immobile film. Many practical situations
have a mobile surface, and the film, in some situations, may be closer to an extensional flow.
Work which approaches the problem from that viewpoint may be successful in some parameter
ranges where our approach would fail. Schwartz and Roy [32] studied a vertical film entirely
within a frame, and their scalings come from an extensional flow limit. They capture both
rigid and mobile behavior, and observed the formation of thin regions that they interpreted
as the beginnings of a black film. Breward [17, Chapter 5] also investigates extensional flow
effects of film drainage into a lamella. We have shown above that similarity behavior at long
times in the mobile case for our model gives the same T −1 behavior as an extensional flow
model; in other situations it may be necessary to include extensional flow terms.
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5.2.2. Computing flow in both the film and the bath
The results presented here use an asymptotic patch to connect the thin film (governed by
lubrication equations) with the hypothesized static meniscus (that approximates the bath).
This assumption has lead to increased understanding, but it would be satisfying to tie together
the draining film and the bath in a more versatile manner. Hansen [65] has studied the steady
flow of a film into a bath for a pure liquid with no shear stress on the free surface using
boundary-integral methods. Kheshgi et al. [51] have also studied a variety of conditions for
terminating a film for coating processes. For a recent review of related models in coating
flows, see [66]. The current situation would require one to generalize to include surfactant
transport and a dynamic flow.

5.2.3. Soluble surfactants
Most films have a soluble surfactant present; we have only treated insoluble surfactants to date,
but other authors have included soluble surfactants in their models (e.g., [17, Chapter 5], [27]).
The soluble surfactant would require the solution of a PDE inside the film for the concentration
of the surfactant as some additional terms to govern the exchange of surfactant between the
surface and the inside of the film. The approximation we have used with an asymptotic patch
to a static meniscus is clearly not sufficient to treat this case, and the flow in the bath must be
computed in concert with the film flow. This is an active area of research.

5.2.4. Three-dimensional model
We have computed a solution to a problem for the vertical film with constant surface vis-
cosity, surfactant transport, and the Marangoni effect [67]. An instability occurs because of
the competition between gravitational and Marangoni effects; gravity causes drainage, but the
drainage increases the concentration gradients near the bottom of the film. These forces cause
a recirculation on the surface. Such an instability was found in the closely related problem
of the drainage of a film in a horizontal ring by Joye and coworkers [14, 15]; they were the
first to compute this kind of solution. Bruinsma [16] studied the analogous problem using a
quasisteady approximation for a base state with equal surface viscosities to develop a stability
theory for the vertical film case. He computed the stability boundary to within a constant
multiple, and concluded that films would usually be unstable to a circulatory flow located
around the transition region. He did expect to find downflow in thickened regions and upflow
in thinned regions, as was observed in the numerics of Naire et al. [67].

In our work, the results were computed on a domain that was horizontally periodic; it
would certainly be worthwhile to consider the case with a finite-width film.

While the instability is interesting, and there are special cases where it may be observed
experimentally [22], the more common observation (particularly in aqueous systems) is that
of ‘peacock feathers’ where there are thin finger-like structures moving up the film out of the
region where the film connects to the bath [1, 21, 26]. No computed solutions have exhibited
these dynamic structures to our knowledge. The main difficulty is that they have their origin
precisely in the region where the scalings change from those of the thin film to those of the
bath. This presents a computational and analytical challenge.
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6. Conclusion

The overall goal of the project was to develop a physical model of a vertical, draining liquid
film. This model would be used to compare to the results obtained from experiment. A se-
quence of models illustrates the roles played by the various effects. Initially, the film featured a
free, but tangentially-immobile surface (infinite surface viscosity or strong Marangoni effect)
which modeled the rigid films reported both in the literature and in the in-house experiments.
Excellent agreement of theory with experiment was obtained regarding the fundamental para-
meter of the time exponent of drainage.

The next step was to relax the boundary condition of a tangentially-immobile surface,
therefore allowing for a finite and variable surface viscosity and surfactant transport at the
surface. The surfactant was fixed as being insoluble in the liquid phase (the ‘insoluble mono-
layer’ model). This model allowed for the capture of many of the features of the surface flows
noted in the experiment and also the time exponent of drainage in the low-surface-viscosity
regime. A key result is the description of the Marangoni effect as being the energetic driver of
many of the surface flows. Also, it was shown that, at either high Marangoni number or high
Boussinesq number, the drainage rate of the film could be severely retarded, at the extreme
resulting in a rigid-surfaced film. This confirms ideas of many in the field of thin liquid films.

Finally, we have been able to acquire some results in the range of intermediate drainge
rates, but they are only a limited part of the observed regimes. A number of new possible
directions have been pointed out.

On the application side, our understanding of the behavior of silicone surfactants as sta-
bilizers for polyurethane foams has tremendously increased. The model work has pointed
the direction towards the development of new materials with elements of the holy grail in
this field, the ability to predict the correlation of surfactant structure and concentration with
foam performance. Operationally, we are much closer to being able to design a surfactant
to yield specific foam performance. Fortunately this knowledge is also transferrable to the
understanding and development of many dispersed physical and chemical systems, including
emulsions and coating processes.
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